MÔNICA VASCONCELOS DE MORAES

FUNÇÃO PULMONAR DOS TRABALHADORES DA FUNDIÇÃO DE METAIS EM UMA INDÚSTRIA METALÚRGICA

SÃO PAULO
2011
MÔNICA VASCONCELOS DE MORAES

FUNÇÃO PULMONAR DOS TRABALHADORES DA FUNDIÇÃO DE METAIS EM UMA INDÚSTRIA METALÚRGICA

Dissertação de Mestrado apresentada ao Programa de Mestrado em Fisioterapia da Universidade da Cidade de São Paulo, como requisito para obtenção do título de Mestre, sob a supervisão da professora Dra. Luciana Dias Chiavegato.

SÃO PAULO
2011
MÔNICA VASCONCELOS DE MORAES

FUNÇÃO PULMONAR DOS TRABALHADORES DA FUNDAÇÃO DE METAIS EM UMA INDÚSTRIA METALÚRGICA

Dissertação de Mestrado apresentada ao Programa de Mestrado em Fisioterapia da Universidade da Cidade de São Paulo, como requisito para obtenção do título de Mestre, sob a supervisão da professora Dra. Luciana Dias Chiavegato.

Área de concentração: Avaliação, Intervenção e Prevenção em Fisioterapia

Data da defesa: 21 de dezembro de 2011

Resultado: ____________________________

BANCA EXAMINADORA:

Prof. Dra. Luciana Dias Chiavegato__
Universidade Cidade de São Paulo

Profª. Dra. Adriana Cláudia Lunardi__
Universidade de São Paulo

Profª. Dra. Rosimeire Padula__
Universidade Cidade de São Paulo
AGRADECIMENTOS

Agradeço a Deus por ter me dado sempre certeza e força de vontade para atingir meus objetivos;

À minha família pelo incentivo, confiança e patrocínio de todos os meus planos. Apesar da distância imensa e das dificuldades que viriam nunca me negaram a oportunidade;

Às minhas irmãs paulistas, Anna Lígia Ruiz, Pamela Tarzia e Renata Ritter pelo amor em todos os momentos, pelo companheirismo e pelas palavras de incentivo diárias;

À minha sempre disponível amiga e parceira Tatiana Onofre, por estar presente 24h do dia na minha vida, sempre dividindo as dificuldades e me entender como ninguém;

Às amigas e companheiras Cassandra Mendes, Paola Coqueiro, Germane Pessoa e Rosane Bernardes por serem a minha válvula de escape nos momentos difíceis;

À minha orientadora, Luciana Chiavegato, por me acolher, me mostrar o caminho e caminhar ao meu lado todo esse tempo;

À professora Rosimeire Padula, pela sua contribuição imensurável em todas as etapas do mestrado;

Aos colaboradores e funcionários da indústria, em especial à fisioterapeuta Thais Ortiz, pelo suporte e confiança.

Meu sincero agradecimento!
SUMÁRIO

LISTA DE TABELAS ... v

PREFÁCIO .. vi

RESUMO .. vii

ABSTRACT ... viii

CAPÍTULO 1 ... 09

1. CONTEXTUALIZAÇÃO ... 09

2. OBJETIVOS .. 11

3. REFERÊNCIAS ... 12

CAPÍTULO 2 ... 13

1. RESUMO .. 14

2. INTRODUÇÃO ... 14

3. OBJETIVOS .. 16

4. MÉTODOS .. 16

5. RESULTADOS ... 18

6. DISCUSSÃO .. 19

7. CONCLUSÃO ... 22

8. REFERÊNCIAS ... 22

CAPÍTULO 3 ... 25

1. CONSIDERAÇÕES FINAIS ... 25

2. ANEXOS ... 26
LISTA DE TABELAS

Tabela 1 - Distribuição dos colaboradores por faixa etária e história tabagística...........18

Tabela 2 - Tempo de exposição, média e desvio padrão das variáveis espirométricas e pico de fluxo expiratório dos colaboradores...19
PREFÁCIO

Esta dissertação está apresentada no formato híbrido proposto pelo Programa de Mestrado em Fisioterapia da Universidade Cidade de São Paulo (UNICID). No primeiro capítulo consta uma contextualização que visa fornecer informações a respeito dos riscos aos quais os trabalhadores da fundição de metais estão expostos, as doenças relacionadas com esta exposição, seu diagnóstico e as formas de prevenção e minimização do risco. Compreende também a justificativa do estudo e seus respectivos objetivos. Nosso trabalho resultou no artigo “Função pulmonar dos trabalhadores da fundição de metais de uma indústria metalúrgica”, o qual se encontra no capítulo 2, contendo introdução, métodos, resultados, discussão e referências bibliográficas. Este artigo foi submetido para a revista *International Journal of Hygiene and Environmental Health*, que orienta a separação de gráficos e tabelas em um documento a parte, entretanto, para facilitar a leitura da banca examinadora, optamos por mantê-los no corpo do texto para melhor entendimento dos resultados. No capítulo 3 constam-se as considerações finais, apontando as principais implicações dos achados deste estudo, limitações e sugestões para futuras pesquisas. Por fim, está disposto em anexo o modelo do Termo de Consentimento Livre e Esclarecido que foi assinado pelos participantes da pesquisa.
RESUMO

Introdução: A metalurgia caracteriza-se pela manipulação dos metais desde sua extração até a formação de materiais para uso em geral. No processo de confecção das peças metálicas, os metais são submetidos a procedimentos de fundição, onde são derretidos e moldados de acordo com as necessidades. A fundição dos metais envolve um processo de alto risco ocupacional aos colaboradores envolvidos, já que estes são expostos aos metais na forma de pó ou pequenas partículas e a vapores e altas temperaturas, no momento da fundição. Embora os equipamentos de proteção individual influenciem a exposição e o risco ocupacional, a inalação das partículas com subsequente prejuízo da função pulmonar, podem gerar uma série de doenças respiratórias. **Objetivo:** Avaliar o impacto da inalação dos gases, poluentes e da alta temperatura na função pulmonar dos colaboradores de uma indústria metalúrgica.

Métodos: Foi realizado um estudo transversal com todos os colaboradores de uma indústria metalúrgica na cidade de Guarulhos-SP que trabalhavam diretamente no processo de fundição de metais. Dos indivíduos foi questionada a sua história clínica, hábitos de vida e realizadas avaliações espirométricas e pico de fluxo expiratório.

Resultados: Os 63 colaboradores avaliados apresentaram uma faixa etária entre 18 a 59 anos, com média de idade de 33,98 ±8,25 anos e a média de anos trabalhados na atividade atual foi de 6,07±6,47 anos. De todos os colaboradores avaliados, apenas 7,93% relataram doenças respiratórias prévias e quanto à carga tabagística, apenas 14,28% dos colaboradores eram fumantes. Em relação à espirometria, os colaboradores apresentaram média de CVF de 95±18% do previsto, VEF₁ de 95,06±15,83% do previsto, além de uma média de 0,82±0,09 da relação VEF₁/CVF. O pico de fluxo expiratório dos colaboradores foi em média 502,06 ± 120,74 L/min. **Conclusão** As provas espirométricas e de pico de fluxo expiratório dentro dos valores preditos se justificam pela média de idade dos colaboradores, bem como pela baixa média de anos trabalhados na atividade de fundição associados ainda à ausência de co-morbidades.

Palavras-chave: função pulmonar, exposição ocupacional, fundição, metais.
ABSTRACT

Introduction: Metallurgy is the science of the manipulation of metals from their extraction to the formation of material for general use. During the manufacturing process, metal is subjected to casting procedures, such as melting and molding. The casting of metal involves a high occupational risk to employees involved, as they are exposed to metals in the form of powder or small particles and vapors, and high temperatures at the time of casting. The risks to which employees are exposed include inhalation of particles with subsequent loss of lung function, leading to a variety of respiratory diseases. Although the protective equipments influence the risk exposure and the occupational inhalation of particles with subsequent loss of lung function can generate a variety of respiratory diseases. **Objective:** To evaluate the impact of the inhalation of gases and pollutants and the high temperatures on pulmonary function of workers in the metallurgical industry. **Methods:** We conducted a cross-sectional study of all employees in a metallurgical industry working directly in the process of metal casting. Individuals were asked for their medical history and lifestyle assessments were made. And routine spirometry and expiratory peak flow levels were measured. **Results:** The 63 employees were aged from 18 to 59, with a mean age of 33.98 ± 8.25 years and mean years working in current environment was 6.07 ± 6.47 years. 14.28% of employees were current smokers and 3.17% former smokers. Of all employees evaluated, only 7.93% reported previous respiratory symptoms, only With regard to spirometry, the employees had a mean FVC of 95 ± 18% predicted, FEV1 of 95.06 ± 15.83% predicted, and an average of 0.82 ± 0.09 FEV1/FVC ratio. The expiratory peak flow of the employees was on average 502.06 ± 120.74 L / min. **Conclusion:** The spirometry and expiratory peak flow values were within normal limits, considering the mean age, period of employment in the metal industry and without previous pulmonary history, smoking status associated with the absence of co-morbidities. **Keywords:** lung function, occupational exposure, casting, metals.
CAPÍTULO 1

CONTEXTUALIZAÇÃO

A descoberta dos metais e o seu aperfeiçoamento para fins materiais data do século XIII, com a utilização do cobre, chumbo, bronze, ferro, ouro e a prata, bem como ligas metálicas pela mistura dos mesmos. No século XVIII, com a revolução industrial, a metalurgia teve um novo impulso, sendo, até os dias de hoje, um ramo empregatício bastante rentável (1).

Segundo o Instituto Brasileiro de Geografia e Estatística, o IBGE, o número de profissionais envolvidos na indústria de transformação em 1996, era em torno de 8,5 milhões de pessoas, sendo aproximadamente 43% deles expostos a poeiras, superando a construção civil, que emprega cerca de 4,5 milhões de trabalhadores (2).

A exposição ocupacional ao ferro é uma das mais comuns no meio industrial. Na siderurgia e na metalurgia, são inúmeras as ocupações expostas à poeira de ferro, como a fabricação de aços, fundições de ferro e de outras ligas que o contenham, e principalmente, o processo de soldagem. Dependendo da atividade profissional, existe exposição a outros agentes potencialmente lesivos, quando inalados juntamente com o ferro (3).

As pneumopatias decorrentes da inalação de poeiras decorrentes do ambiente de trabalho são denominadas pneumoconioses, entretanto esse termo exclui as enfermidades de hiper sensibilidade do pulmão como as alterações as reações de vias aéreas como asma, bronquite, enfisema e alterações neoplásicas. Denomina-se siderose a pneumoconiose secundária à inalação da fumaça ou do pó de óxido de ferro (2, 4, 5).

As pneumoconioses são denominadas simples ou não fibrogênicas quando a exposição ao fator de risco não culmina na fibrose do tecido pulmonar. Grande número de pneumoconioses não fibrogênicas são causadas pela inalação de poeiras metálicas a partir de fumos metálicos bem como poeiras de sais inorgânicos. Suas características morfofuncionais são lesões de tipo macular com depósito intersticial de partículas e desarranjo estrutural discreto, presença de infiltrado inflamatório ao redor, sem proliferação fibroblástica (4).

A inalação de partículas em suspensão no ar decorrente da queima de determinadas substâncias pode afetar os trabalhadores de formas diferentes, dependendo
da toxicidade das substâncias queimadas, variando desde um simples sufocamento até perigosas intoxicações. O problema pode ser amenizado com a instalação e melhoria dos sistemas de exaustão nos postos de trabalho (5).

Dados da previdência social mostram que em 2007 foram notificados mais de 600 mil trabalhadores afastados por acidentes de trabalho, desse total, 4% se relacionavam às doenças ocupacionais (6). Apesar dos riscos ocupacionais decorrentes da exposição aos metais serem conhecidos há bastante tempo, não existem muitos estudos abordando a função pulmonar dos indivíduos expostos. Além disso, no Brasil, a saúde do trabalhador, bem como a saúde ambiental passaram a compor a saúde coletiva apenas na década de 90, buscando conhecer e intervir nas relações trabalho e saúde-doença (7,8).

Com a implementação da saúde do trabalhador, a atenção à saúde passou a ter um caráter preventivo ao invés de exclusivamente curativo. De modo a prevenir ou atenuar os agravos à saúde, foram criadas normas regulamentadoras que limitam a exposição do trabalhador aos fatores de risco, tais como auditivos, térmicos, pressóricos e, na impossibilidade de retirar por completo o risco, disponibilizam Equipamentos de Proteção Individual (EPIs) para diminuir a exposição do trabalhador (9). Os EPIs disponibilizados para a proteção respiratória compreendem máscaras e respiradores, e a sua escolha varia de acordo com as substâncias presentes no ar e suas dimensões. Seu uso é fortemente fiscalizado sob pena de multa ao empregador caso seja descumprida a norma (10).

No âmbito laboral, preconiza-se a realização das avaliações de função pulmonar anual ou semestralmente, de acordo com o risco ao qual o trabalhador está exposto. Tal avaliação é realizada pelo médico do trabalho e fiscalizada pelos agentes de inspeção que realizam visitas periódicas com punição em casos de descumprimento da lei (9).

Os exames de função pulmonar são importantes em uma série de situações, especialmente quando o indivíduo tem história ou sintomas que sugerem doença pulmonar, ou ainda quando sofreu ou sofre exposição a fatores de risco como atividade laboral ou tabagismo. Os valores obtidos devem ser comparados a valores previstos adequados para a população avaliada, por isso sua interpretação deve ser feita com base na história clínica e epidemiológica. Os principais exames utilizados para a avaliação da função respiratória são a espirometria e o pico de fluxo expiratório (PFE) (11).

A espirometria previne, diagnostica e qualifica os distúrbios ventilatórios presentes. Trata-se de um exame primordial na avaliação de pacientes sintomáticos,
doença pulmonar conhecida ou em indivíduos saudáveis expostos a fatores causadores de doenças respiratórias. Já o PFE avalia o grau de obstrução das vias aéreas. Excetuando os casos de doenças pulmonares ou exposição prolongada a fatores de risco, o PFE apresenta um declínio fisiológico em torno da quarta década de vida. As doenças mais comumente associadas à obstrução de vias aéreas são a asma e a Doença Pulmonar Obstrutiva Crônica (DPOC), as quais são indicativas de realização rotineira do exame para acompanhamento e monitorização da terapêutica. Caracteriza-se por um exame rápido, prático e de baixo custo\(^{(12, 13)}\).

Devido à importância e à gravidade das doenças respiratórias e ao número elevado de trabalhadores expostos aos fatores predisponentes este é um tema que ainda requer a atenção de pesquisadores e profissionais da saúde a fim de garantir qualidade da produção sem prejuízo da saúde e também elaboração de propostas às empresas para que possam melhor avaliar os colaboradores.

OBJETIVOS

Geral

- Avaliar o impacto da inalação de gases em altas temperaturas e partículas provenientes da fundição de metais na função pulmonar dos colaboradores do setor de fundição de uma indústria metalúrgica.

Específicos

- Correlacionar o perfil espirométrico e o pico de fluxo expiratório com a idade e o tempo de exposição do trabalhador;
- Identificar os mecanismos de controle médico ocupacional dos riscos ambientais de exposição a altas temperaturas e partículas suspensas.
REFERÊNCIAS

CAPÍTULO 2

FUNÇÃO PULMONAR DOS TRABALHADORES DA FUNDIÇÃO DE METAIS EM UMA INDÚSTRIA METALÚRGICA

M.V. Moraes¹, R.A.B. Bernardes¹, R. S. Padula¹ L.D. Chiavegato¹

1. Programa Mestrado em Fisioterapia da Universidade Cidade de São Paulo

Correspondência:

Autor correspondente:

Luciana Dias Chiavegato

e-mail: lu_chaivegato@uol.com.br

Rua Cesário Galeno 448

03071-000; Tatuapé, São Paulo, Brasil.

Tel.: +55 11 21781564
RESUMO

Introdução: A metalurgia caracteriza-se pela manipulação dos metais desde sua extração até a formação de materiais para uso em geral. No processo de confecção das peças metálicas, os metais são submetidos a procedimentos de fundição, onde são derretidos e moldados de acordo com as necessidades. A fundição dos metais envolve um processo de alto risco ocupacional aos colaboradores envolvidos, já que estes são expostos aos metais na forma de pó ou pequenas partículas e a vapores e altas temperaturas, no momento da fundição. Embora os equipamentos de proteção individual influenciem a exposição e o risco ocupacional, a inalação das partículas com subsequente prejuízo da função pulmonar, podem gerar uma série de doenças respiratórias. **Objetivo:** Avaliar o impacto da inalação dos gases, poluentes e da alta temperatura na função pulmonar dos colaboradores de uma indústria metalúrgica. **Métodos:** Foi realizado um estudo transversal com todos os colaboradores de uma indústria metalúrgica na cidade de Guarulhos-SP que trabalhavam diretamente no processo de fundição de metais. Dos indivíduos foi questionada a sua história clínica, hábitos de vida e realizadas avaliações espirométricas e pico de fluxo expiratório. **Resultados:** Os 63 colaboradores avaliados apresentaram uma faixa etária entre 18 a 59 anos, com média de idade de 33,98 ±8,25 anos e a média de anos trabalhados na atividade atual foi de 6,07±6,47 anos. De todos os colaboradores avaliados, apenas 7,93% relataram doenças respiratórias prévias e quanto à carga tabagística, apenas 14,28% dos colaboradores eram fumantes. Em relação à espirometria, os colaboradores apresentaram média de CVF de 95±18% do previsto, VEF₁ de 95,06±15,83% do previsto, além de uma média de 0,82±0,09 da relação VEF₁/CVF. O pico de fluxo expiratório dos colaboradores foi em média 502,06 ± 120,74 L/min. **Conclusão** As provas espirométricas e de pico de fluxo expiratório dentro dos valores preditos se justificam pela média de idade dos colaboradores, bem como pela baixa média de anos trabalhados na atividade de fundição associados ainda à ausência de co-morbidades. **Palavras-chave:** função pulmonar, exposição ocupacional, fundição, metais.

1. Introdução

A metalurgia situa-se como ciência que estuda e manipula os metais desde a extração até a transformação destes formando peças e componentes para uso em geral. Aço, latão, bronze e diversas ligas metálicas formam produtos comercializáveis de maneira diversa, como por exemplo, barras, tubos, chapas, peças e componentes (1).

O procedimento envolvido na fabricação de um produto metalúrgico tem início com a seleção da matéria-prima, seguido de um processo de fundição, onde o material é derretido em fornos, em temperaturas em torno de 600ºC, liberando vapores e poeira em altas concentrações (1,2).
Em geral, todo o processo envolvido na fundição dos metais se dá em galpões fechados e com ventilação reduzida, a fim de evitar a perda da matéria-prima, caracterizando-o como exposição ocupacional de alto risco com susceptível inalação por colaboradores na área, caso não se protejam por meio de Equipamentos de Proteção Individuais (EPIs), como as máscaras e/ou respiradores\(^{(2-4)}\).

A ocorrência da asma ocupacional, por exemplo, é bem documentada nas salas de fundições. Além disso, as poeiras inaladas podem desencadear reações específicas como inflamação brônquica, distúrbios ventilatórios, obstrução irreversível ao fluxo aéreo e até mesmo doenças como bronquite crônica, enfisema, edema pulmonar e carcinoma brônquico\(^{(5-8)}\).

É sabida a variabilidade de agentes nocivos ao sistema respiratório presentes no ambiente de trabalho, entretanto, as entidades nosológicas secundárias a esta exposição e suas repercussões ainda são subnotificadas\(^{(9)}\). Antes isso se devia à inexistência de programas que assegurassem os trabalhadores dos riscos sofridos até a década de noventa. Atualmente, dados da Organização Mundial de Saúde (OMS) calculam que apenas cerca de 1 a 4% das doenças ocupacionais são devidamente notificadas, existindo falhas na identificação e notificação dos agravos\(^{(10)}\).

A legislação brasileira adotou uma postura mais preventiva no que diz respeito à saúde do trabalhador, criando, em 1994, programas de controle médico de saúde ocupacional e de prevenção de riscos ambientais que implantaram normas regulamentadoras que tornaram obrigatórias as avaliações médicas periódicas, o controle rigoroso da exposição a fatores químicos, físicos e o uso de EPIs, de modo que diminuíssem os índices de afastamento por acidentes de trabalho beneficiando empregado e empregador\(^{(4)}\). Quando não é possível a retirada do fator de risco, a utilização dos EPIs pode reduzir o impacto causado nos trabalhadores expostos\(^{(11)}\).

As ferramentas para avaliação, prevenção e acompanhamento das doenças respiratórias ambientais e ocupacionais são os exames de função pulmonar, como a espirometria e pico de fluxo expiratório (PFE) que, além de quantificarem os distúrbios, monitoram a progressão de eventuais alterações respiratórias, e o pico de fluxo expiratório (PFE), que tem como principal vantagem o baixo custo e a facilidade de transporte e manuseio\(^{(7-9, 12-13)}\).

Ao tratarmos da exposição ocupacional sofrida pelos colaboradores, trazemos questões importantes como as repercussões pulmonares envolvidas, bem como os gastos previdenciários na manutenção destes colaboradores afastados, o que requer medidas
senão para sanar, minimizar os danos causados já que a produção de metais e ligas metálicas cresce a cada dia, consequentemente, a exposição continuará presente (4;14).

2. Objetivos

Avaliar o impacto da inalação de gases em altas temperaturas e partículas provenientes da fundição de metais na função pulmonar dos colaboradores do setor de fundição de uma indústria metalúrgica e correlacionar o perfil espirométrico e o pico de fluxo expiratório com a idade e o tempo de exposição do trabalhador.

Identificar os mecanismos de controle médico ocupacional sobre os riscos ambientais de exposição a altas temperaturas e partículas suspensas.

3. Métodos

3.1 Delineamento do estudo: Foi realizado um estudo transversal com trabalhadores da fundição de uma indústria metalúrgica em uma cidade do estado de São Paulo. A amostra foi composta por indivíduos selecionados especificamente nos setores relacionados à fundição e que desempenhavam suas funções expostos a fornos em altas temperaturas, após aprovação do comitê de ética e assinatura do termo de consentimento livre e esclarecido (Anexo 1).

3.2 Caracterização da amostra: Os sessenta e oito colaboradores responsáveis pelo setor de fundição de metais distribuídos em subsetores, locados no mesmo ambiente físico, de acordo com a característica da peça a ser produzida. Foram excluídos do estudo, aqueles que apresentavam doenças cardiovasculares e/ou respiratórias previamente diagnosticadas que limitassem ou impossibilitassem a realização das avaliações e aqueles que não encontravam-se na empresa no momento da avaliação.

3.2.1 Caracterização da atividade: Os subsetores são fundição leve, para peças de pequeno porte, fundição contínua e fundição pesada, para peças de médio e grande porte, além de outros específicos como fusão de matéria prima e Shell Molding, onde os moldes que definem o design da peça são feitos de uma mistura de areia e resina, formando uma estrutura rígida e resistente às altas temperaturas da matéria-prima. O trabalho dos colaboradores se dividia em duas etapas:
Preparação do molde: Caracteriza-se por preparar os materiais que formam os moldes, aquecê-los, moldá-los e desmoldá-los.

Preparação da peça: Os colaboradores responsáveis por esta função fazem a alimentação contínua dos fornos, utilizando pás para o depósito do material nos fornos para que haja a fusão total do material e a conformação nos moldes.

O produto principal fabricado na indústria avaliada é o bronze e, em menor escala, outras ligas metálicas, que são produzidas pelas ligas de dois ou mais metais em determinadas concentrações. Os metais utilizados são: cobre, zinco, estanho, alumínio e ferro.

3.3 Materiais e Equipamentos: Os colaboradores tiveram peso e altura mensurados através da balança da marca Microlife, previamente calibrada e estadiômetro da marca Sany, a fim de extrair os valores previstos para cada colaborador. A espirometria foi realizada através do espirômetro da marca EasyOne™, modelo 2001, previamente calibrado pelo fabricante. Para a avaliação do pico de fluxo expiratório foi utilizado o dispositivo que mensura o pico de fluxo expiratório (peak flow meter) da marca Mini Wright Padrão com variação de fluxo entre 60 e 800 L/min.

3.4 Procedimentos: Após exame físico e avaliação criteriosa quanto à presença de doenças prévias, sinais e sintomas respiratórios e história tabagística, os colaboradores receberam esclarecimentos sobre os procedimentos a serem realizados e foi realizada demonstração da técnica. A avaliação da função pulmonar foi realizada por espirometria de acordo com critérios técnicos propostos pelas Diretrizes Brasileiras para Testes de Função Pulmonar e American Thoracic Society (15,16). Após repouso de cinco a dez minutos, o sujeito foi posicionado sentado e foi solicitada uma expiração vigorosa, por no mínimo seis segundos. A mensuração do pico de fluxo expiratório foi realizada com o colaborador em ortostatismo, sendo solicitada uma expiração vigorosa e tão rápida quanto fosse possível. Foram realizadas três mensurações com cada participante e considerado o melhor resultado dentre elas, sendo descartadas as tentativas que apresentavam episódios de tosse, posicionamento incorreto do bucal ou vedamento insatisfatório do bocal (12).

3.5 Análise estatística: Os dados encontrados foram submetidos a uma análise estatística de caráter descritivo, com média, desvio padrão e intervalo de confiança das variáveis. Após verificação da normalidade dos dados, foi aplicado o teste de correlação de Pearson para estabelecer associação entre as variáveis. O nível de significância utilizado foi de 5%.
4. Resultados

Encontravam-se presentes 63 dos 68 colaboradores no momento das coletas, os quais foram exclusivamente do sexo masculino. Dividiam-se nos turnos manhã, tarde e noite, com carga-horária de oito horas diárias de trabalho. Os cinco ausentes foram excluídos por motivos diversos como demissão, afastamento por doença ou recusa na participação dos exames. A faixa etária do grupo variou de 18 a 59 anos, sendo a média de idade de 33,98 ± 8,25 anos e a média de anos trabalhados na atividade de fundição foi de 6,07 ± 6,47 anos. A distribuição dos colaboradores por faixa etária e da história tabagística está disposta na tabela 1.

Tabela 1: Distribuição dos 63 colaboradores de uma indústria metalúrgica por faixa etária e história tabagística.

<table>
<thead>
<tr>
<th>Idade</th>
<th>Nº de colaboradores</th>
<th>Nº fumantes</th>
<th>Nº ex fumantes</th>
<th>Nº não fumantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Até 20 anos</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>21 - 30 anos</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>31 - 40 anos</td>
<td>25</td>
<td>5</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>41 - 50 anos</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Mais de 50 anos</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Na avaliação da história respiratória pregressa, apenas cinco colaboradores (7,93%) relataram doenças respiratórias prévias, como sinusite por exemplo. Quanto à carga tabagística, apenas nove colaboradores (14,28%) eram fumantes, com carga tabagística bastante discrepantes, variando entre 3 e 30 anos/maço com média de 14,33 ± 14,01. Cinquenta e dois colaboradores (82,53%) nunca fumaram e apenas dois colaboradores (3,17%) eram ex-fumantes.

Em relação à espirometria, apresentaram média de CVF de 4,57 ± 0,94 litros, totalizando 95 ± 18% do previsto, VEF₁ de 3,73 ± 0,74 litros, compreendendo 95,06 ± 15,83% do previsto, além de média de 0,82 ± 0,09 da relação VEF₁/CVF. Quanto ao pico de fluxo expiratório, apresentaram em média 502,06 ± 120,74 L/min. (Tabela 2).
Foram realizadas análises estatísticas de correlação entre as variáveis: idade, tempo de trabalho, CVF, VEF₁ e PFE, não havendo correlação entre as variáveis, \((r < 0,1)\).

Tabela 2: Tempo de exposição, média e desvio padrão e intervalo de confiança das variáveis espirométricas e pico de fluxo expiratório de 63 trabalhadores de uma indústria metalúrgica

<table>
<thead>
<tr>
<th></th>
<th>Anos na função</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Até 5 anos</td>
<td>5-10 anos</td>
<td>Mais de 10 anos</td>
</tr>
<tr>
<td>Nº colaboradores</td>
<td>35</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>CVF (L)</td>
<td>Média(DP)</td>
<td>4.67(1,07)</td>
<td>4.53(0,77)</td>
</tr>
<tr>
<td></td>
<td>IC 95%</td>
<td>4.32 - 5.03</td>
<td>4.08 - 4.98</td>
</tr>
<tr>
<td>VEF₁(L)</td>
<td>Média(DP)</td>
<td>3.81(0,85)</td>
<td>3.65(0,48)</td>
</tr>
<tr>
<td></td>
<td>IC 95%</td>
<td>3.52 - 4.09</td>
<td>3.36 - 3.93</td>
</tr>
<tr>
<td>VEF₁/FVC (L)</td>
<td>Média(DP)</td>
<td>0.82(0,10)</td>
<td>0.81(0,07)</td>
</tr>
<tr>
<td></td>
<td>IC 95%</td>
<td>0.78 - 0.85</td>
<td>0.77 - 0.85</td>
</tr>
<tr>
<td>PFE (L/min)</td>
<td>Média(DP)</td>
<td>499.71(118,56)</td>
<td>480.91(143,63)</td>
</tr>
<tr>
<td></td>
<td>IC 95%</td>
<td>460.44 - 538.99</td>
<td>396.03 - 565.79</td>
</tr>
</tbody>
</table>

Legenda: CVF: capacidade vital forçada; VEF₁: volume expiratório forçado no primeiro segundo; PFE: pico de fluxo expiratório.

Em relação à quantidade e concentração de metais, não há mensuração do material em suspensão. Nos galpões existem exaustores de ar. Já a mensuração térmica é feita por um termômetro instalado no setor, com manutenção térmica em torno de 30-35º C. São disponibilizados respiradores semi-faciais PFF2V contra poeiras, fumos e gases, além de consultas periódicas e solicitação de exames conforme queixa dos colaboradores.

5. Discussão

Não encontramos, neste estudo, alterações na função pulmonar que pudessem ser explicadas pela atividade ocupacional exercida pelos indivíduos avaliados ou mesmo pelo tempo exercido e via de exposição nessa atividade.

Os colaboradores analisados se caracterizavam como adultos jovens, homens, o que condiz com dados obtidos na literatura, onde o perfil profissional das áreas base do setor industrial na grande maioria é do sexo masculino e com faixa etária média de 35
anos \(^{(17,18)}\). Por se tratarem de indivíduos jovens é justificável que o tempo médio na função seja baixo, fato que também foi visto na amostra, seis anos em média.

Durante o questionamento de sinais e sintomas pulmonares e história prévia de doenças respiratórias não houve nenhum relato por parte dos trabalhadores, o que condiz com os resultados espirométricos e de pico de fluxo expiratório dentro dos limites de normalidade. Lighfoot et al (2010) atribuí a ocorrência ou não de sinais e sintomas respiratórios de acordo com o tipo de metal inalado, concentração e a via de exposição ao metal, sendo muitas vezes ausente o risco, como a exposição ao níquel \(^{(19)}\). Por outro lado, Ahn et al (2010) afirmam não existir parâmetro de análise de tempo de exposição, sendo este fator objeto de estudos até o momento \(^{(18)}\).

De acordo com as provas espirométricas e de pico de fluxo expiratório, não houve alterações significativas mesmo quando os resultados foram estratificados de acordo com o tempo de profissão, já que declínio anual de até 15% de VEF\(_1\) é considerado aceitável para a American Thoracic Society (ATS) \(^{(20)}\).

Søyseth et al (2011) acompanharam trabalhadores de uma fundição na Noruega num período de cinco anos e observaram a existência de limitação ao fluxo aéreo maior em expostos ao pó quando comparados aos não expostos, entretanto tal limitação se manteve estável durante todo o acompanhamento do grupo, demonstrando a cronicidade dos efeitos da exposição ao risco. Tal fato não se repete quando se trata de sinais e sintomas respiratórios em soldadores de metais, já que a exposição aos fumos se dá em maior intensidade e proximidade, com rápida e subsequente perda de função pulmonar \(^{(21-23)}\).

Kusaka et al em 1996 estudaram a exposição ocupacional a metais pesados, correlacionando com história tabagística e sinais e sintomas respiratórios e obtiveram resultados espirométricos condizentes com doença pulmonar obstrutiva, entretanto não encontraram relatos referentes ao tempo de exposição no seu estudo, o que poderia explicar os resultados dentro da normalidade na maioria dos sujeitos do presente estudo, pensando na ausência de dois fatores de risco, tabagismo e grande período de exposição, além de não se tratarem de metais pesados envolvidos \(^{(24)}\).

Tal fato gera muitas discussões quanto às manifestações clínicas de acordo com o metal inalado. Donoghue et al, em 2011, evidenciaram em seu estudo a presença de asma ocupacional em colaboradores expostos ao alumínio na forma de pó e fumo, sem entretanto, a utilização, por partes destes, de equipamentos de proteção individual, contrapondo-se ao nosso estudo em que havia total adesão ao uso dos EPIs e não
houveram alterações espirométricas e de PFE. (5) Em contrapartida, Souza et al em 1998, avaliando trabalhadores expostos ao ferro, consideram o risco de adquirir uma pneumoconiose benigna, ausente de sintomas clínicos ou repercussões espirométricas, a não ser quando há associação do ferro a outros metais, como a sílica (25).

Observamos que, tanto a empresa, quanto os trabalhadores se preocupavam com a adesão e uso correto das EPIs. Em estudo de Wang et al em 1999, foi observada uma redução nos valores de VEF₁ em indivíduos expostos a uma série de fatores secundários ao ambiente ocupacional, em que o uso de EPIs apresentou correlação positiva com a atenuação da queda dessa variável (11). Entretanto, para De Capitani et al (2010), a utilização dos EPIs não pode ser tomada como anulação dos fatores de risco, sendo, por vezes, não respeitada ou adequada a especificação técnica (26).

Outro resultado surpreendente foi o baixo índice de tabagismo da amostra. Estudos sobre tabagismo mostram uma correlação direta entre tabagismo e classe socioeconômica, ou seja, uma maior prevalência entre homens, com menor grau de instrução e com menor remuneração (27). Já no nosso estudo, embora fossem de uma classe socioeconômica e cultural menos privilegiada, esta relação não se concretizou. Dos 63 trabalhadores avaliados apenas 8 (5,04%) eram fumantes e, mesmo a carga tabagística não foi homogênea, apresentando em média 14,33 anos/maço.

Segundo a entrevista realizada durante exame clínico, foi observada entre os trabalhadores a falta da devida importância no que diz respeito à prevenção e ao diagnóstico precoce das doenças ocupacionais, já que, anteriormente, na indústria avaliada, não eram realizados exames específicos como espirometria e pico de fluxo expiratório a não ser quando os colaboradores referissem sintomas pulmonares. Isto faz parte de uma série de modificações quanto aos cuidados e precauções da empresa para com o funcionário a fim de melhor avaliá-los, porém, esta pode ter sido uma limitação deste estudo, uma vez que não dispunhamos de examesprévios nem realizamos exames de imagem que pudessem trazer alterações pulmonares iniciais que não são visíveis no teste de função pulmonar.

Frente aos dados encontrados e o disposto na literatura sugerimos estudos de acompanhamento ao longo do tempo, avaliando as possíveis alterações na função pulmonar dos colaboradores expostos.
6. Conclusão

Não foram encontradas alterações na função pulmonar dos colaboradores expostos à fundição de metais, o que pode ter sido decorrente de diversos fatores como idade, tempo de profissão, utilização adequada de EPIs e tipo de metal exposto.

7. Referências

15. Pereira CAC. Testes de Função Pulmonar. Sociedade Brasileira de Pneumologia e Tisiologia. 2001;1-12

CAPÍTULO 3

Considerações Finais

Considerando-se as medidas de proteção utilizadas e o baixo tempo de exposição, os resultados encontram-se dentro dos limites de normalidade, nos levando a concluir que a exposição aos vapores e partículas metálicas não causaram prejuízo na função pulmonar destes trabalhadores.

Por outro lado, quando este estudo responde nossa pergunta inicial, nos leva a outros questionamentos como qual o limite entre exposição e risco ou quanto de exposição, em horas/dia ou anos de profissão, é necessário para causar prejuízo na função pulmonar.

Vale ressaltar a existência de inúmeras microempresas onde a fiscalização e a aplicação das leis são falhas, no que diz respeito à proteção dos trabalhadores, diagnóstico das afecções e punição dos responsáveis.

Algumas limitações do estudo foram o difícil acesso à empresa, que se situa numa rodovia distante da cidade de São Paulo, a colaboração de alguns participantes pela baixa escolaridade, o que gerou difícil entendimento dos testes propostos. Outro fator limitante foi a inviabilidade de realização de exames de imagem para que analisássemos alterações pulmonares iniciais que antecipam a perda de função pulmonar.

Destacamos que outras análises estão em desenvolvimento como Teste de Caminhada de 6 Minutos e pesquisas de qualidade de vida que serão discutidas e relacionadas com este estudo em um futuro próximo, além de almejarmos um acompanhamento anual destes trabalhadores para identificar o momento da ocorrência de afecções pulmonares.
ANEXOS
ANEXO 1 - TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

UNIVERSIDADE CIDADE DE SÃO PAULO

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

Projeto de pesquisa principal: Influência do envelhecimento e da experiência profissional no desempenho físico, aspectos biopsicossociais e estratégias motoras de trabalhadores.

Coordenadora: Dra Rosimeire Simprini Padula

Subprojeto: Influência do envelhecimento e da experiência profissional na função pulmonar e tolerância ao exercício de trabalhadores da indústria metalúrgica.

Orientadora: Profª Drª Luciana Dias Chiavegato

V.Sa. está sendo convidado (a) a participar do projeto de pesquisa acima citado. Os avanços na área da saúde ocorrem por meio de estudos como este, por isso a sua participação é importante. O documento abaixo contém todas as informações necessárias sobre a pesquisa que estamos realizando. Não será feito nenhum procedimento que lhe traga qualquer desconforto ou risco à sua vida. Você terá acesso aos profissionais responsáveis pela pesquisa para esclarecimento de eventuais dúvidas. A responsabilidade é do principal investigador Luciana Dias Chiavegato.

Você poderá ter todas as informações que quiser e poderá não participar da pesquisa ou retirar seu consentimento a qualquer momento. Pela sua participação no estudo, você não receberá qualquer valor em dinheiro, mas terá a garantia de que todas as despesas necessárias para a realização da pesquisa não serão de sua responsabilidade.
As informações obtidas serão utilizadas apenas para essa pesquisa e serão analisadas em conjunto com outros fisioterapeutas, não sendo divulgado a identificação de seu nome.

Eu, _____________________________, residente e domiciliado (a) na ________________________________, portadora da célula de identidade, RG____________, nascido (a) em ___/___/___, abaixo assinado (a), concordo de livre e espontânea vontade em participar como voluntário (a) do estudo “Influência do envelhecimento e da experiência profissional na função pulmonar e tolerância ao exercício de trabalhadores da indústria metalúrgica”.

Declaro que ficaram claros para mim quais são os propósitos do estudo, os procedimentos a serem realizados, seus desconfortos e riscos, as garantias de confidencialidade e de esclarecimentos permanentes. Ficou claro também que minha participação é isenta de despesas. Conordo voluntariamente em participar deste estudo e poderei retirar o meu consentimento a qualquer momento, antes ou durante o mesmo, sem penalidades ou prejuízo ou perda de qualquer benefício que eu possa ter adquirido, ou no meu atendimento neste Serviço.

Estou ciente que:

I) O estudo é necessário para avaliar influência do envelhecimento e da experiência profissional na tolerância ao exercício e a capacidade pulmonar em indivíduos que trabalhem na indústria metalúrgica.

II) Os voluntários serão submetidos a uma avaliação inicial, ao teste da caminhada de seis minutos, à manovacuometria e à espirometria (prova de função pulmonar).

III) Teste da caminhada da dos seis minutos: os voluntários deveram percorrer a maior distância tolerável durante 6 minutos, podem realizar quantas pausas julgarem necessário, retomando a caminhada logo que se sinta apto, sendo autorizados a interromper a caminhada no caso de fadiga extrema, ou outro sintoma limitante. Ao final dos 6 minutos mede-se a distância percorrida, pressão arterial e saturação de oxihemoglobina.

IV) Espirometria: para a medida de volumes e capacidades pulmonares será utilizado um aparelho portátil de espirometria, que adaptado a um bocal, através de uma inspiração seguida de uma expiração máxima, realizará as medidas acima citadas.
Para a medida da força muscular respiratória, utilizaremos um monovacuômetro que, também adaptado a um bocal, deverá ser colocado na boca do paciente, para que, através da expiração mensuremos a força muscular expiratória e através da inspiração, a força muscular inspiratória.

Para a realização dos exames acima citados, os pacientes deverão ficar em posição sentada e deverão utilizar um clip nasal, a fim de que não tenhamos influência da respiração nasal.

V) Tenho a liberdade de desistir ou interromper a colaboração neste estudo no momento em que desejar, sem necessidade de qualquer explicação;

VI) A desistência não causará nenhum prejuízo à minha saúde ou bem estar físico;

VII) Os resultados obtidos durante este estudo serão mantidos em sigilo, mas concordo que sejam divulgados em publicações científicas, desde que meus dados pessoais não sejam mencionados;

VIII) Caso eu desejar, poderei tomar conhecimento dos resultados ao final desta pesquisa;

()Desejo conhecer os resultados () Não desejo conhecer os resultados

São Paulo,___ de ______________ de 2011.

() Voluntário____________________________

Testemunha 1: _______________________________
Nome/RG/Telefone

Testemunha 2: _______________________________
Nome/RG/Telefone

Declaro que obtive de forma apropriada e voluntária o Consentimento Livre e Esclarecido deste paciente para a participação neste estudo

Responsável pelo Projeto:______________________________